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Diffusion of the magnetization profile in the XX model
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We investigate the magnetization profile in the intermediate time of diffusion by using theC* -algebraic
method. We observe a transition from monotone profile to nonmonotone profile. This transition is purely
thermal.
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I. INTRODUCTION

The anomalous properties of the state with current in o
dimensional integrable system has attracted considerabl
terest. Especially, heat conduction in one-dimensional s
tems is a long-standing problem. It has been expected
the existence of conserved quantities implies anomalous
ductivity of the heat current@1#. A large number of numerica
investigations have been done@2#

It is natural to consider the state with current as the n
equilibrium steady state~NESS!, i.e., the state which is as
ymptotically realized from the inhomogeneous initial sta
@3,4#. In other words, the NESS is the state at the converg
point. Many works have been reported on the NESS its
However, the relaxation process to the NESS has not b
investigated much. After a large but finite time, what kind
profile does the observable quantity show? In a previous
per @5#, stating from the inhomogeneous initial state~the
temperatures of the left and the right are different!, I ob-
tained the homogeneous NESS for the transverseXX model.
Investigating the profiles in the intermediate time, we wou
obtain the diffusion of the temperature profile. Furthermo
in the integrable system, the existence of the conser
quantities may have a significant influence on the relaxa
process.

In this paper, we investigate the profile at the large int
mediate time using the transverseXX model. The chain is
initially divided to the left and the right, and kept at differe
temperatures. The problem of intermediate profile with inh
mogeneous initial condition in theXX model was first stud-
ied by Antalet al. in Ref. @6#. They considered the magnet
zation profile at zero temperature with the reversed exte
field, a situation that makes the calculation simple. It w
shown that the magnetization profile shows the scaling pr
erty, m(x,t)'F(x/t). They calculated the explicit form o
the scaling functionF, which has the flat part around th
origin. We investigate this problem with the aid of th
C* -algebraic argument. Modifying the argument of Ho a
Araki @7#, we develop a method which is applicable to t
present situation. TheC* -algebraic argument makes the ca
culation much simpler, and enables us to consider the m
general situation, including the finite-temperature case.

We obtain the scaling limitm(x,t)'F(x/t). For the situ-
ation of Antal et al. @6#, we reproduce the same result. W
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further consider the finite-temperature case. In the fin
temperature case, we obtain a remarkable dependence o
magnetization profile on the strength of the external field a
the temperature. When the external field is large, or the
ference of the temperature is small, the profile varies mo
tonically. On the other hand, when the external field is sm
and the difference of the temperature is large, the profile
not monotone and has two extremum points. This featur
absent at zero temperature. That is, this phenomenon is
to a purely thermal effect. This can be explained by the
locity distribution. In Sec. II, we represent the model and t
initial condition. In Sec. III, the scaling property of correla
tion function is derived. In Sec. IV, we investigate the inte
esting property that the profile reveals.

II. THE MODEL

The Hamiltonian we shall consider has the form

H5
1

4 (
n52`

`

~sn
xsn11

x 1sn
ysn11

y !1
g

2 (
n52`

`

sn
z , ~1!

wheresn
a(a5x,y,z) is thea component of the Pauli matrix

at the siten. This Hamiltonian is called the transverseXX
model. The Hamiltonian is written by the fermion operato
using the Jordan-Wigner transformation@8#

H52
1

2 (
n52`

`

@an11
† an1an

†an11#1
g

2 (
n52`

`

~2an
†an21!,

~2!

wherean andan
† are the fermionic annihilation and creatio

operators on thenth site @9#.
Owing to the bilinear form of the Hamiltonian, the dy

namics of the many body system can be written by the
namics of the single particle. So, we only have to consi
the dynamics of the linear combination ofan

† ,

a†~ f ![ (
l 52`

`

f ~ l !al
† , (

l 52`

`

u f ~ l !u2,`. ~3!

Here, l denotes thel th site. The summable sequence$ f ( l )%
can be interpreted as the wave function of the single part
that is present on the lattice. They construct the one part
Hilbert space, with the inner product
©2002 The American Physical Society23-1
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^ f ug&5 (
l 52`

`

f ~ l !g~ l !.

As usual, we define the norm off as

i f i5S (
l 52`

`

u f ~ l !u2D 1/2

.

In the one particle Hilbert space, the Fourier transform
tion is defined as

f̂ ~k![ (
n52`

`

f ~n!e2 ink, f ~n!5
1

2p E
2p

p

f̂ ~k!e2 ink.

By the Hamiltonian~2!, a†( f ) evolves as

a†~ f !→a†~eith f !, ~4!

whereeith is the dynamics of the single particle, represen
in the Fourier representation as

eith f̂ ~k!5e2 i t ~cosk2g! f̂ ~k!.

Hence, in the coordinate representation, we have

~eith f !~n!5
1

2p E
2p

p

dke2 i t ~cosk2g!eink f̂ ~k!. ~5!

From now on, we use the following notations. Usual
the Heisenberg representation of the observableA is

eitHAe2 i tH .

Instead of this, we use the notationa t(A),

eitHAe2 i tH↔a t~A!.

In this notation, the dynamics of the single particle 4 is wr
ten as

a t„a
†~ f !…5a†~eith f !.

We also use the unusual notation about the states. Usu
the state is given by a density matrixr, and the expectation
value ofA is given by

Tr rA.

Instead of this, we usev,

Tr rA↔v~A!.

These notations are introduced because the usual nota
are mathematically ill defined in an infinite system. Ho
ever, there is no inconvenience in interpreting them in
usual sense@10,11#.

The initial statev0 we consider is inhomogeneous. T
define it, we divide the chain to the left and the right. The l
(n<0) side is in equilibrium under magnetic fieldg2 with
inverse temperatureb2 . We denote the state byv2 . On the
other hand, the right (n>1) side is in equilibrium under
06612
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magnetic fieldg1 with inverse temperatureb1 . We denote
the state byv1 . The expectation values ofa†(g)a( f ) in
v2 , v1 are expressed as

v2„a
†~g!a~ f !…5

1

p E
2p

p

dkr2~k!g̃2~k! fD2~k!,

v1„a†~g!a~ f !…5
1

p E
2p

p

dkr1~k!g̃1~k! fD1~k!, ~6!

wherer6 is determined by the variablesb6 , andg6 as

r r~k!5
1

11e2br @cos~k!2gr # .

We used the Fourier-sine transform,

f̃ 2~k![2 i (
n52`

0

f ~n!sin@~n21!k#, kP@0,p#,

f ~n!5
2i

p E
0

p

dk f̃2~k!sin@~n21!k#, n<0,

f̃ 1~k![2 i (
n51

`

f ~n!sin~nk!, kP@0,p#,

f ~n!5
2i

p E
0

p

dk f̃1~k!sin~nk!, n>1.

Because of the quadratic form of the equilibrium statesv2

andv1 , the expectation values are evaluated by use of
Wick product with the two-point function. The initial stat
has then the following product form:

v0~A2 ^ A1!5v2~A2!v1~A1!, ~7!

whereA2 andA1 are arbitrary operators of the left part (n
<0) and the right part (n>1) of the chain, respectively.

III. THE SCALING PROPERTY

Now, we investigate the asymptotic profile of physic
quantities. Let us considerXn , some physical value localize
in the neighborhood of siten. The expectation value ofXn at
the time t is X(n,t)[v0„a t(Xn)…, with the notation of the
preceding section. The scaling property means

X~n,t !'FxS n

t D ,

i.e., for larget, the expectation value ofX at the sitevt is
almostFX(v). Figure 1 shows the situation. Each figure
the snapshot of the profile of someX, at the timet0 , 3t0 , and
10t0 . Note that the leaned area has the widtht0 , 3t0 , and
10t0 , respectively. It shows that thewave of diffusion ex-
pands with a constant velocity 1. They can be written as
3-2
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X~n,t !5FXS n

t D ,

Here,FX(v) is the scaling function represented in Fig. 2.
To show this scaling property, we have to prove the f

lowing convergence to the scaling functionFX :

FX~v !5 lim
t→`

X~vt,t !5 lim
t→`

v0„a t~Xvt!….

As v0 is determined by the Wick product of the two-poi
function, we only have to derive the limit for theX
5a†(g)a( f ) case,

vv„a
†~g!a~ f !…[Fa†~g!a~ f !~v !

5 lim
t→`

v0„a t@a†~Svtg!a~Svt f !#…,

where we used them-sift operatorSm on the one particle
Hilbert space,

~Smf !~n![ f ~n2m!.

For example, to derive the asymptotic profile of the mag
tization m(v), we calculate

m~v !5 lim
t→`

v0„a t~
1
2 svt

z !…5 lim
t→`

v0„a t~avt
† avt!…2

1
2

5 lim
t→`

v0„a t@a†~Svth0!a~Svth0!#…2 1
2

5vv„a
†~h0!a~h0!…2 1

2 ,

with h0 a wave function defined as

h0~n!5H 1, n50,

0, nÞ0.

Using theC* -algebraic method, we can make the argum
generic. As an advantage, we can treat the finite-tempera
case. The argument uses the result of Ho and Araki@7#. They

FIG. 1. The picture of diffusion. Thex axis is the site. Each
picture shows the snapshot of the profile of the local physical qu
tity X at the timet0 , 3t0 , and 10t0 . The wave of the diffusion
spread with the velocity 1.
06612
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calculated the following decomposition of Eq.~5!; for unu
,t(12d), with d.0, we have

~eith f !~n!5~Tt f !~n!1~A f !~n,t !.

Tt is the operator which is defined as

~Tt f !~n!5
1

2 S p

2
tA12~n/t !2D 21/2

@ f̂ „2sin21~n/t !…

3e2 in sin21~n/t !2 i tA12~n/t !21 ip/4

1 f̂ „6p1sin21~n/t !…

3ein@6p1sin21~n/t !#1 i tA12~n/t !22 ip/4#

~1for n<0, 2for n.0!. ~8!

This term corresponds to the contribution from the mom
tum k(n,t) where the phase velocity

f~k!52cosk1g1
nk

t

is stationary, i.e.,

f8~k!5sink1
n

t
50

⇒k~n,t !52sin21~n/t !,6p1sin21~n/t !

~1for n<0, 2for n.0!. ~9!

(A f )(n,t) decay as

u~A f !~n,t !u<
Cd

t
~10!

with Cd some constant which is independent ofn. They also
showed that the contribution toeith f from unu.t(12d),

Bd[ lim
t→`

(
unu.t~12d!

u~eith f !~n!u2→0, ~11!

goes to zero asd→0. Equations~10! and ~11! ensure the
following:

eith f ;Tt f , ~12!

for large t. We can see from Eq.~8!, this means that at the
site n, there is only the particle with momentumk(n,t).

n-

FIG. 2. The scaling functionFX(v) corresponds to Fig. 1. In
this figure, thex axis is not the site, but the scaling factorv.
3-3
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Now, let us return to the current problem. First, we defi
projection operators on the one particle Hilbert space. T
coordinate projectionsPm

2 , Pm
1 are

@Pm
2 f #~n![H 0, n.m,

f ~n!, n<m,

@Pm
1 f #~n![H f ~n!, n.m,

0, n<m.

There is the following relation betweenSm andPl
1 :

SmPl
65Pm1 l

6 Sm . ~13!

The velocity projectionsP̂v
2 , P̂v

1 are defined in the Fourie
representation as

@ P̂v
2̂ f #~k![H 0, kPI v ,

f̂ ~k!, kPI v
c ,

@ P̂v
1̂ f #~k![H f̂ ~k!, kPI v ,

0, kPI v
c ,

where

I v[$kP~2p,p!;v,sink%,

andI v
c is the complement ofI v . From the definition ofTt ~8!,

we have

TtP̂v
65P2vt

7 Tt . ~14!

Next we calculate the asymptotic value of

a t„a
†~Svt f !…5a†~eithSvt f !.

We claim that

lim
t→`

iP0
2Svte

ith f 2 P̂v
1Svte

ith f i50.

We have to calculate

~eithSvt f !~n!5
1

2p E
2p

p

dke2 i t ~cosk2g!ei ~n2vt !k f̂ ~k!,

which we obtain by replacingn of Eq. ~5! with n2vt. Note
thatSm commutate with the dynamicseith. Let us define@g# t
as

@g# t~n![H ~SvtTtg!~n!, un2vtu<t~12d!,

~Svte
ithg!~n!, un2vtu.t~12d!.

Using the relations~13!, ~14!, we have for un2vtu<t(1
2d),
06612
e
e

@ P̂v
1g# t~n!5~SvtTtP̂v

1g!~n! ~15!

5~SvtP2vt
2 Ttg!~n!5~P0

2SvtTtg!~n!

5~P0
2@g# t!~n!. ~16!

Let us fix somed.0. Then, in the asymptotic limitt→`,
we have from Eqs.~16!,

iP0
2@g# t2@Pv

1g# ti2

5 (
un2vtu.t~12d!

uP0
2Svte

ithg~n!2Svte
ithP̂v

1g~n!u2

1 (
un2vtu<t~12d!

uP0
2@g# t~n!2@ P̂v

1g# t~n!u2

<2F (
unu.t~12d!

ueithg~n!u21 (
unu.t~12d!

ueithP̂v
1g~n!u2G

→2@Bd~g!1Bd~ P̂v
1g!#. ~17!

We also have in thet→` limit,

iSvte
ithg2@g# ti2

5 (
un2vtu<t~12d!

u~Svte
ithg!~n!2~SvtTtg!~n!u2

5 (
un2vtu<t~12d!

u~eithg!~n2vt !2~Ttg!~n2vt !u2

5 (
unu<t~12d!

u~eithg!~n!2~Ttg!~n!u2

5 (
unu<t~12d!

u~Ag!~ t,n!u2

< (
unu<t~12d!

~Cd!2

t2 →0. ~18!

Hence, we have

lim
t→`

iP0
2Svte

ithg2 P̂v
1Svte

ithgi< lim
t→`

iP0
2Svte

ithg2P0
2@g# ti

1 lim
t→`

iP0
2@g# t2@Pv

1g# ti1 lim
t→`

i@Pv
1g# t2 P̂v

1Svte
ithgi

<2@Bd~g!1Bd~ P̂v
1g!#.

We used Eqs.~17!, ~18! and the commutativity ofP̂v
1 , Svt ,

and eith. Note that the first term limt→`iP0
2Svte

ithg

2 P̂v
1Svte

ithgi is d independent. So, takingd→0, we have

lim
t→`

iP0
2Svte

ithg2 P̂v
1Svte

ithgi50. ~19!

Similarly, we have

lim
t→`

iP0
1Svte

ithg2 P̂v
2Svte

ithgi50. ~20!
3-4
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Next, we substitute the above result to the initial state
derive the two-point functionvv„a

†(g)a( f )…. For the pur-
pose, we rewrite the initial state with the projection operat
P6 . Note that

f̃ 2~k!52 i (
n<0

f n sin~n21!k

52 i (
n<0

f n

ei ~n21!k2e2 i ~n21!k

2i

52
1

2
@P0

2 f̂ ~2k!e2 ik2P0
2 f̂ ~k!eik#.

Hence, we have

v2„a
†~g!a~ f !… ~21!

5
1

4p E
2p

p

dk@P0
2 f̂ ~2k!P0

2ĝ~2k!1P0
2 f̂ ~k!P0

2ĝ~k!

2e2ikP0
2 f̂ ~2k!P0

2ĝ~k!2e22ikP0
2 f̂ ~k!P0

2ĝ~2k!#r2~k!.

~22!

We are now interested inv2„a
†(gt)a( f t)…, with gt

5Svte
ithg, f t5Svte

ith f . We can see from Eq.~22!, that
v2„a

†(gt)a( f t)… is written withP0
2Svte

ithg andP0
2Svte

ith f .
Hence, we can apply the asymptotic form~19!.
Applying the formula, we have

lim
t→`

v2„a
†~gt!a~ f t!…

5 lim
t→`

1

4p E
2p

p

dk@2P̂v
1~k! f̄̂ ~k!ĝ~k!

2e22ikP̂v
1~k!P̂v

1~2k!e2ivtk f̄̂ ~k!ĝ~2k!

2e2ikP̂v
1~k!P̂v

1~2k!e22ivtk f̄̂ ~2k!ĝ~k!#r2~k!.

Here we used the fact that the Fourier representation ofSm is

Smf̂ ~k!5e2 imkf̂ ~k!.

By the Riemann-Lebesgue theorem, the second and the
terms vanish and we finally obtain

lim
t→`

v2„a
†~gt!a~ f t!…5

1

2p E
v,sin k

dkr2~k! f̄̂ ~k!ĝ~k!.

Similarly, we obtain

lim
t→`

v1„a
†~gt!a~ f t!…5

1

2p E
v>sin k

dkr1~k! f̄̂ ~k!ĝ~k!.

Hence, the explicit form of the two-point function o
vv„a

†(g)a( f )… is
06612
o
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vv„a
†~g!a~ f !…5

1

2p E
v,sin k

dkr2~k! f̄̂ ~k!ĝ~k!

1
1

2p E
v>sin k

dkr1~k! f̄̂ ~k!ĝ~k!.

Note thatvv„a
†(g)a( f )… is translation invariant.

The velocity of the particle with momentumk is sink. We
see that only the particles at temperature 1/b2 with velocity
(v<sink<1) contribute to the statevv . This represents the
situation that on the inertial system that moves with veloc
v, quasiparticles with velocity less thanv in the left part of
the chain go to left infinity and do not appear in the corre
tion function vv . This feature is also the case for the pa
ticles with temperature 1/b1

IV. THE ASYMPTOTIC PROFILE

With the two-point function, we can calculate th
asymptotic profile of physical quantities. The magnetizat
profile m(v) is

m~v !5
1

2p E
v.sin k

dkr1~k!1
1

2p E
v<sin k

dkr2~k!2
1

2
.

The magnetic current profile is defined by

JM~v !5 lim
t→`

v„a t~Jvt
M !…,

whereJn
M5Sn

ySn11
x 2Sn

xSn11
y is the magnetic current at th

site n. Similarly, JM(v) is calculated as

JM~v !5
1

2p E
v.sin k

dkr1~k!sink

1
1

2p E
v<sin k

dkr2~k!sink.

Let us consider the zero-temperature case: each side
the ground state (b15b25`) with magnetic fieldg1 ,
g2 , respectively. We further assumeg[g152g2 . This is
the situation that was considered in Ref.@6#, and we confirm
their results,

m~v !52m~2v !55
0, 0<v,cospm0

2m01
arccos~v !

p
, cospm0<v,1

1

2
2m0 , 1<v,

whereg5sinpm0.
3-5
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YOSHIKO OGATA PHYSICAL REVIEW E66, 066123 ~2002!
JM~v !5JM~2v !55
1

p
g5

1

p
sinpm0 , 0<v,cospm0

1

p
A12v2, cospm0<v,1

0, 1<v.

In the zero-temperature case, regardless of the strength o
external fieldsg1 , g2 , we can show that the magnetizatio
profile m(v) is monotone. The situation is classified by t
following conditions.~A! The absolute value of the extern
field: ~i! ug2u, ug1u<1, ~ii ! ug2u<1, ug1u.1 or ug1u<1,
ug2u.1, ~iii ! ug2u, ug1u.1. ~B! The signs of the externa
field: ~i! sign(g1)5sign(g2), ~ii ! sign(g1)52sign(g2).
Hence, we have 33256 cases. By the explicit calculation
we can show that for all the situations, the magnetizat
profile m(v) is monotone. Figure 3 shows the magnetizat
profile for each case. As seen in the following, the finiten
of the temperature destroy this monotonicity when the ex
nal field is small.

To concentrate on the thermal inhomogeneity, let us c
sider the situationg[g15g2Þ0. Due to the nonzerog, the
spins have finite magnetization up to the value of the te
perature. The left side of Fig. 4 shows the profile of t
magnetization for various values of the external field a
temperature. Figure 4~a! corresponds to the caseg520.5,
b2510, b151. It shows the nonmonotone profile. As th

FIG. 3. The magnetization profile at zero temperature for v
ous external fields. Thex axis is the scaling factorv. They axis is
the value of magnetization. All the cases are classified by
3(B). ~A! The absolute value of the external field:~i! ug2u, ug1u
<1; ~ii ! ug2u<1, ug1u.1 or ug1u<1, ug2u.1; ~iii ! ug2u, ug1u
.1, ~B! The signs of the external field:~i! sign(g1)5sign(g2);
~ii ! sign(g1)52sign(g2). ~a! A-~i!, B-~i!; ~b! A-~i!, B-~ii !; ~c!
A-~ii !, B-~i!; ~d! A-~iii !, B-~i!; ~e! A-~ii !, B-~ii !; ~f! A-~iii !, B-~ii !.
06612
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magnetization profile is monotone at zero temperatureb2

5b15`, this is considered to be a purely thermal proper
When we increase the strength ofg, the nonmonotonicity is
lost. Figure 4~b! shows theg521 case with the same tem
perature:b2510, b151. We can see the monotone profil
On the other hand, decrease of the difference of the temp
ture also destroy the nonmonotonicity. Figure 4~c! show the
g520.5 case with the different temperature:b252, b1

51. The difference emerges also in the magnetic curr
The right side of Fig. 4 shows the profile of the magne
current. In the case~a!, the current takes the maximum valu
at two points. They corresponds to the two extremum po
of the magnetization profiles. On the other hand, in
monotone case, the current takes the maximum at the or
v50.

The property of the profile~monotone/nonmonotone! can
be explained by the velocity distribution. First, recall that t
velocity of the particle at momentumk is sink. To see the
dependence of the velocity distribution, let us consider
derivatives ofm(v) and JM(v) with v. For simplicity, we
restrict ourselves to the case that bothr2(k) andr1(k) are
continuous, i.e., both sides are initially at a finite tempe
ture. In this case, we can differentiatem(v) andJM(v) with
v for 21,v,1. We have

dm~v !

dv
5

1

A12v2
@p1~v !2p2~v !#,

i-

)

FIG. 4. The profile of the magnetization and the magnetic c
rent at a finite temperature for various external fields. The left gr
shows the magnetization profile, and the right one shows the m
netic current profile. In the left graph, thex axis is the scaling factor
v and they axis is the value of the magnetizationm(v). In the right
graph, thex axis is the scaling factorv and they axis is the value of
the magnetic currentJM(v). ~a! g520.5, b2510, b151; ~b! g
521, b2510, b151; ~c! g520.5, b252, b151.
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dJM~v !

dv
5

v

A12v2
@p1~v !2p2~v !#,

wherep2 (p1) is the velocity distribution,

pr~v ![
1

2p F 1

11e2br ~
A12v2

2g!

1
1

11e2br ~2A12v2
2g!

G .

From these expressions, we can see that the differe
p1(v)2p2(v) determines the monotone/nonmonotone
m(v) and j (v); if, for example, there exists a point whe
p1(v).p2(v) changes top1(v),p2(v), the profile is

FIG. 5. The velocity distribution of the right and left sides. Th
x axis is the velocityv; they axis is the distributionp(v). The solid
line showsp2(v), and the dashed line,p1(v). ~a! g520.5, b2

510, b151; ~b! g521, b2510, b151; ~c! g520.5, b252,
b151.
v.
i-

s.

06612
ce
f

nonmonotone. Figure 5 showsp2(v), p1(v) for the above
mentioned situation. We can see the crossing only for
case of nonmonotone~a! @9–11#.

V. DISCUSSION

We have investigated the profiles of the magnetizat
and the magnetic current, in the intermediate time towa
the nonequilibrium steady state, using the transversedXX-
model. We have found an interesting property: depending
the strength of the external fields and the values of ini
temperature, the profile shows monotone/nonmonotone p
erty. This emerges as a result of the initial velocity distrib
tion of the right and the left side. If there is a crossing b
tween two distributions, the profile becomes nonmonoto
This initial velocity dependence is due to the fact that t
transverseXX model preserves the one-particle mode. Ea
particle runs to the infinity with its own velocity. In this
sense, the integrability affects the diffusion profile in an e
sential way.

The derivation of the asymptotic profile is carried out
showing the equations~19!, ~20!. These equations are due
Eq. ~14!; the fact that for each site there is only the partic
with specific momentum. The specific momentum is the m
mentum where the phase velocity is stationary~9!. In other
words, if the dynamics of free Fermion is asymptotica
dominated by the stationary point, we would have the sa
property as in this paper, even if the dispersion is not cos
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